Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
The cooling performance of automatic transmission fluids (ATFs) plays an important role in hybrid electrical vehicles, in which the electric motor (EM) is placed inside the transmission housing due to their mission of cooling the EM. The cooling performance of the ATFs depends on their thermophysical properties, but these properties change with the oxidation of the ATFs. This work studies the influence of the oxidation of three ATFs (A, B, C) on their thermophysical properties, as well as on some figures-of-merit (FOMs) which are relevant for evaluating the cooling performance. The results indicated that the influence of the molecular structure on thermal conductivity and heat capacity is stronger than on density and viscosity, whereas the molecular structure hardly affects the FOMs of the fresh ATFs; ATFs B and C, formulated with base oils from API Group III, indicated better cooling performance than ATF A which was formulated with base oils from API Group I; the sensitivity to temperature of the variation with oxidation of the studied properties, including the FOMs, was almost null, except for ATF A; therefore, FOMs should be used to compare the cooling performance of ATFs for electric drivetrains instead of a single property, such as thermal conductivity....
The optimal design of a super highspeed flywheel rotor could improve flywheel battery energy density. The improvement of flywheel battery energy density could enhance the performance of the flywheel lithium battery composite energy storage system. However, there are still many problems in the structure, material and flywheel winding of super highspeed flywheels. Therefore, in this paper, electric flywheel energy and power density parameters are designed based on CPE (Continuous Power Energy) function and vehicle dynamics. Then, according to the design index requirements, the structure, size and material of the electric flywheel rotor are designed. Furthermore, the numerical analysis model of stress and displacement of multi-ring interference fit flywheel rotor under plane stress state is established. On this basis, the influence laws of flywheel rotor wheel flange numbers and interlaminar interference on stress distribution of flywheel rotor are analyzed, and the assembly form of wheel flange is determined. Finally, the stress check of the flywheel rotor is completed. The results show that the super highspeed flywheel rotor designed in this paper meets vehicle dynamics requirements in terms of energy storage and power. In terms of strength, it meets the design requirements of static assembly stress and dynamic stress at maximum speed....
Besides the integration of renewable energies, electric vehicles pose an additional challenge to modern power grids. However, electric vehicles can also be a flexibility source and contribute to the power system stability. Today, the power system still heavily relies on conventional technologies to stay stable. In order to operate a future power system based on renewable energies only, we need to understand the flexibility potential of assets such as electric vehicles and become able to use their flexibility. In this paper, we analyzed how vast amounts of coordinated charging processes can be used to provide frequency containment reserve power, one of the most important ancillary services for system stability. Therefore, we used an extensive simulation model of a virtual power plant of millions of electric vehicles. The model considers not only technical components but also the stochastic behavior of electric vehicle drivers based on real data. Our results show that, in 2030, electric vehicles have the potential to serve the whole frequency containment reserve power market in Germany. We differentiate between using unidirectional and bidirectional chargers. Bidirectional chargers have a larger potential but also result in unwanted battery degradation. Unidirectional chargers are more constrained in terms of flexibility, but do not lead to additional battery degradation. We conclude that using a mix of both can combine the advantages of both worlds. Thereby, average private cars can provide the service without any notable additional battery degradation and achieve yearly earnings between EUR 200 and EUR 500, depending on the volatile market prices. Commercial vehicles have an even higher potential, as the results increase with vehicle utilization and consumption....
The transportation system contains many fossil fuel-based automobiles equipped with the internal combustion engine that results in the pollution of the environment and greenhouse gas emissions. In recent years, to replace these automobiles with clean choices, electric vehicles are developed. So far, three kinds of electric vehicles including hybrid, plug-in, and full-electric vehicles are introduced. In the hybrid and plug-in electric vehicles, both the internal combustion engine and electric motor are used to move the vehicle. However, in the full-electric vehicle, the movement of the vehicle is done only by the electric motor. Due to the development of the electric vehicles in the transportation system, different aspects of these vehicles such as reliability must be studied. The reliability indices of the electric vehicles are affected by the failure rate of the composed components. Thus, to exactly determine the reliability performance of the electric vehicles, the failure rate of the main composed components affected by different parameters such as speed of the vehicle and temperature is taken into account. In the present paper, to accurately study the reliability of all-electric vehicles, the impact of variation in the temperature and vehicle speed on the failure rate of the composed components including battery, inverter, electric motor, and other static and rotation parts of the full-electric vehicle and consequently the failure rate of the vehicle is investigated. To determine the impact of operating temperature on the failure rate of composed components, the Arrhenius law is proposed. Based on the variation in the vehicle failure rate in terms of the vehicle speed and temperature, the reliability of the electric vehicle at different conditions is determined. It is concluded from numerical results performed in the paper that the failure rate of the understudied full-electric vehicle varies between 3.5 and 6 failures per year when the temperature varies between 0 and 50°C and the vehicle speed varies between 0 and 200 km/h....
Analysis of mechanical and thermal behaviors during braking has become an increasingly important issue in many transport sectors for different modes of transportation. Brake failure generated during braking is a complex phenomenon confronting automobile manufacturers and designers. During braking, kinetic energy is transferred to thermal energy, resulting in the intense heating of disc brake rotors that increases proportionally with vehicle speed, mass, and braking frequency. It is essential to look into and improve strategies to make versatile, thermally resistant, lightweight, high-performance discs. As a result, this study uses the finite element method to conduct a thermo-mechanical analysis of aluminum alloy and aluminum matrix nano-composite disc brake rotors to address the abovementioned issues. The FEA method is used for the thermo-mechanical analysis of AMNCs for vented disc brake rotor during emergency braking at 70 km/h. From the results obtained, aluminum base metal matrix nano-composites have an excellent strength-toweight ratio when used as disc brake rotor materials, significantly improving the discs’ thermal and mechanical performance. From the result of transient thermal analysis, the maximum value of heat flux obtained for aluminum alloy disc is about 8 W/mm2, whereas for AMNCs, the value is increased to 16.28 W/mm2. The result from static analysis shows that the maximum deformation observed is 0.19 mm for aluminum alloy disc and 0.05 mm for AMNCs disc. In addition, the maximum von Mises stress value of AMNC disc is about 184 MPa. The maximum von Mises stress value of aluminum alloy disc is about 180 MPa. Therefore, according to the results, the proposed aluminum base metal matrix nano-composites are valid for replacing existing materials for disc brake rotor applications....
Loading....